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Abstract— Stress has emerged as a significant contributor to various diseases in the modern world. Prolonged stress can lead to severe 

mental health issues such as depression, heart attack, and anxiety. Detecting and addressing stress in its early stages is crucial and is 

possible only through continuous monitoring. This paper presents the design of a cost-effective and accurate wearable device capable of 

detecting mental stress based on skin conductance, heart rate variability, and motion detected through an accelerometer. Addi tionally, it 
includes a mobile application that utilizes the device’s camera to detect stress. The mobile application also features a chatbot and an 

alleviation feed to help alleviate stress. The wearable device captures readings from its sensors and transmits the data to a smartphone via 

Bluetooth Low Energy. Through intelligent analysis of the correlations between these signals using machine learning algorithms, the 

application predicts whether the subject is experiencing stress. This approach not only helps users gain a better understandi ng of their 

stress patterns but also provides reliable data to healthcare professionals for more effective treatment. 

Index Terms: Chatbot, Machine learning, Mobile application, Stress detection, Wearable sensors. 

 

I. INTRODUCTION 

Human mental health significantly impacts social, 

emotional, and psychological well-being [1]–[3]. In today’s 

modern  world, stress has become a prevalent issue. 

Long-term stress threatens the physical and mental health. 

University undergraduates, burdened by heavy workloads, 

particularly exams, presentations, and relationship problems, 

often neglect stress alleviation methods due to reluctance in 

sharing their situations with others. Early identification and 

timely alleviation of stress are crucial, as chronic stress can 

lead to severe problems such as depression, anxiety, and even 

suicide [1], [2]. 

During stress, the autonomic nervous system is triggered, 

resulting in increased blood pressure, heart rate, respiratory 

rate, and electrodermal activ ity [1], [4], [5], along with 

decreased heart rate variability and skin  temperature [6], [7]. 

Biomarkers such as encephalography (EEG), 

electrocardiography (ECG), photoplethysmography (PPG), 

electrodermal activ ity (EDA), functional Magnetic 

Resonance Imaging (fMRI), thermal imaging (TI), and skin  

temperature (ST) [2], [8], [9] can capture these physiological 

responses. Among these, ECG, PPG, EDA, and blood 

pressure are widely used in wearable devices [1]. Our 

objective is to develop a wearable device, focusing on EDA 

and PPG as biomarkers. 

Using heart rate alone as an indicator for mental stress may 

result in misclassification, as heart rate can increase for 

various reasons [7], [10] other than mental stress. Signal 

artifacts caused by motion, electrode placement, or 

respiratory movement while taking a reading further can 

affect the accuracy of measured recordings. Additionally, 

determining the ground truth of a user’s stress level when 

labeling training data in a mobile environment is challenging. 

These factors pose difficult ies in developing a pervasive 

mental stress detection and alleviat ion applicat ion suitable 

for everyday use. 

While there are existing applications in the market, finding  

an affordable product that combines stress detection and 

allev iation remains a challenge for the average person [3], 

[9]. Cheaper solutions often lack accuracy and the interfaces 

of currently availab le mobile applications for stress detection 

and allev iation are complex for the average user to use it  

daily. In this work, we present a convenient, low-cost 

wearable device with a mobile application with improved 

accuracy. 

Our application is designed for daily life, where 

individuals’ movements are unrestricted, leading to artifacts 

in recorded data. To address this, we propose novel artifact  

detection and removal strategies. Additionally, we extract  

features from heart act ivity, skin conductance, and 

accelerometer signals using our sensors attached to the 

wearable device. These features are utilized to classify an 

individual’s stress level through machine learn ing 

algorithms. Real-life testing of our system involved 

collecting physiological signals from participants using the 

designed wearable device and the mobile application camera.  

This paper is organized as follows: First, we discuss 

related works in Section II. We introduce our application 

architecture together with the system design in Section III. 

Implementation of our applicat ion in Section IV. Data 

collection is included in Section V. Experiments and results 

are in Section VI. Finally, in Sect ion VII important 
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conclusions are made while suggesting possible future 

directions of our application. 

II. RELATED WORK 

In this section, we discuss existing applications for mental 

stress detection and alleviation. The studies in [11], [12] 

describe the detection of mental stress based solely on EDA. 

However, using only EDA signals, the accuracy is around 

80%. Stress detection using the PPG b iomarker is described 

in [4], [13]. Most research in mental stress detection uses a 

combination o f two or more biomarkers [5], [6], [14]. These 

studies have obtained higher accuracy compared to research 

using a single biomarker. According to the systemic review 

in [1], it is clear that using more biomarkers increases the 

accuracy of detection. In the studies mentioned above, ECG, 

EDA (GSR), PPG, and ST are the most commonly used 

biomarkers. However, EDA and PPG are the most suitable 

biomarkers [5] when designing a wrist-wearable device. 

There is some research on mental stress detection using 

mobile phones, their features, and applications. In [15], data 

for detecting stress is monitored using mobile phone usage, 

such as calls, SMS, and screen on/off activity. Recognition of 

stress through the human voice using microphones embedded 

in s martphones is described in  [16]. The study in [17] 

discusses using a mobile phone camera to obtain PPG signals 

by capturing a video of the fingert ip. However, these studies 

focus only on stress detection. 

Current studies regarding stress relief are discussed in the 

review [3]. Only 11 chatbots were included from an initial 

search of 1,000 applications related to stress relief. Woebot 

and Wysa are some popular chatbot applications for stress 

allev iation, but they do not have stress detection capabilit ies. 

The article [18] describes the utilization of chatbots for 

medical consultation. However, this chatbot is not used for 

any stress alleviation purposes. 

To identify the noise caused by motion art ifacts, the study 

in [19] presents a stress detection system that includes an 

accelerometer. The application SoDA, described in [20], 

involves a stress detection and alleviation system. However, 

there is no complete application that includes a wearable 

device to detect stress, a mobile phone application for stress 

detection, and a chatbot for alleviation. 

III. SYSTEM DESIGN 

In this section, we describe our application architecture, 

including the b iomarkers and their physiological signals, the 

components of the wearable device, and the mobile 

application we developed. The overall arch itecture of the 

application, depicted in figure 1, includes the wearable 

device, mobile applicat ion, and other interconnected systems. 

 
Figure 1 Overall Architecture 

A. Photoplethysmography and Heart Rate Variability 

Heart rate variability (HRV) is a crucial indicator of both 

physical fitness and mental well-being. Traditionally, 

electrocardiography (ECG) has been the primary  method for 

measuring HRV. However, for our research focusing on 

wearable devices, ECG detection is not suitable. Instead, we 

use photoplethysmography (PPG) as a convenient alternative 

for HRV measurement. PPG signals are acquired either by 

placing the fingertip under a mobile phone camera o r using a 

dedicated sensor attached to the fingertip. 

Previous research has consistently shown that heart rate 

(HR) and heart rate variab ility (HRV) undergo changes 

during mental tasks. HRV and  other features of PPG signals 

can be leveraged to measure the level of mental stress. In a 

study involving 28 subjects, it was demonstrated that HRV 

decreases during the performance of mental tasks or exposure 

to stressors [7]. Moreover, the study in [10] h ighlights the 

significant relationship between HRV and mental stress. 

B. Electrodermal Activity and Galvanic Skin Response  

Galvanic Skin Response (GSR), also referred to as 

Electrodermal Activ ity (EDA), measures changes in the 

electrical properties of the skin. When an individual 

experiences emotional arousal or stress, the body produces 

sweat, leading to an increase in skin conductance. EDA is 

computed by applying a small current and measuring the 

resistance of the skin between two electrodes. 

GSR or EDA is widely recognized as one of the most 

discriminative signals [21], along with heart  rate signals, for 

measuring stress levels in ind ividuals. By analyzing GSR/  

EDA signals, we can gain  valuable insights into the 

physiological response to stress and emotional arousal. 

C. Wearable Device 

The wearable device includes a main microcontroller unit  

(MCU) that serves as the central processing unit, responsible 

for the seamless integration of various sensors. Specifically, 

the pulse sensor is utilized as a photoplethysmography (PPG) 

sensor, while the Grove GSR sensor is employed as an 

electrodermal act ivity (EDA) sensor. Additionally, an 

accelerometer is incorporated to effect ively detect mot ion in  

the user’s hand. The device also includes a voltage regulator 

to provide a stable power supply. 
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D. Mobile Application  

To address the numerous limitations in the currently 

available mobile applicat ions on the market, part icularly  their 

inability to comprehensively manage stress through both 

detection and alleviat ion functionalities, we have developed a 

novel mobile applicat ion specifically designed for Android 

platforms using the Java programming language. 

The mobile application contains several features for stress 

detection and alleviation. The main features are as follows: 

● Real-Time Stress Detection: The application detects 

stress using both a camera and a wearable device.  

● Multi-Language Support Chatbot: The chatbot 

supports multiple languages, including English, 

Sinhala, and Tamil, using the Google Translate API. 

● Interactive Feed: Based on the chat history and 

detected stress levels, the applicat ion suggests stress 

allev iation methods to users through an interactive 

feed. 

IV. IMPLEMENTATION 

This section describes how we implement the system 

based on previously discussed designs. 

A. Wearable Device and PCB Design Implementation 

The STM32WB55RGV6 [22] is the microcontroller un it, 

and the ADXL345 is the accelerometer used in the wearable 

device shown in figure 2. To  ensure precise physiological 

measurements, the wearable device captures the 

photoplethysmography (PPG) signal at 64 Hz and the 

galvanic skin response (GSR) signal at 4 Hz using 

analog-to-digital converters (ADCs). The microcontroller 

unit (MCU) facilitates data reception from the accelerometer 

via the I2C communication protocol, enhancing the device’s 

functionality and versatility in  capturing vital physiological 

information. 

 
Figure 2. Wearable Device 

The LD39050PU33R acts as a voltage regulator, providing 

a stable 3.3V power supply to essential components such as 

the microcontroller, pulse sensor, GSR sensor, and 

accelerometer, ensuring reliable and consistent operation. 

Additionally, the device incorporates an M830520 2.4 GHz 

chip antenna, enhanced by an MLPF-WB55-01E3 passive 

filter network. The MLPF-WB55-01E3 is a microscopically  

small, bumpless 6-pad ch ip-scale integrated circuit . The 

wearable device is equipped with a custom-designed PCB, as 

shown in figure 3. 

 
Figure 3. Left: Top Side of PCB, Right: Bottom Side of 

PCB 

The microcontroller is programmed via ST-LINK/V2, and  

the Firmware Upgrade Service (FUS), and wireless stack is 

updated using STM32CubeProgrammer software. The 

STM32CubeMX software is used to generate the Bluetooth 

Low Energy (BLE) application. The code to acquire data 

from the sensors and transmit it to the mobile phone through 

BLE was built using the STM32CubeIDE software. 

B. Mobile Application and Chatbot Implementation 

Figure 4 illustrates the interfaces of the implemented 

mobile application, which includes features for stress 

detection and alleviation. The application provides a feed for 

users and incorporates a chatbot designed to offer 

personalized support. 

 
Figure 4. Mobile Application Interfaces  
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A. Stress Detection 

The mobile application facilitates stress detection using 

the mobile phone camera. We use only  PPG to measure stress 

levels by capturing a video of the fingertip. Image processing 

techniques extract the PPG signal using the mobile phone 

camera. Since PPG is highly affected by motion, we first use 

a motion detection algorithm to identify  motion. If motion is 

detected while the user is taking readings, the process will be 

stopped, and the user will need to restart. If no motion is 

detected, we analyze each frame and obtain the PPG signal 

value for every frame as proposed in [17]. Typically, mobile 

phones support a frame rate of 30 fps. We need to up-sample 

this before applying it to the classification algorithms. The 

up-sampling and classification algorithms are explained in  

the algorithm section. 

B. Chatbot and Alleviation Feed Implementation 

The mobile application’s chatbot functionality is  

developed using OpenAI’s Chat Complet ions API and 

prompt engineering techniques. To enhance the chatbot’s 

performance, we configured the prompt to simulate a 

counselor with extensive experience, capable of 

understanding users’ feelings. Additionally, the API receives 

chat history from recent conversations to provide context for 

generating appropriate responses based on the user’s current 

emotions and situation. The generated response is then 

displayed within the application’s interface. For this purpose, 

we utilized the GPT-3.5-turbo model. 

Furthermore, the chat feature of the application supports 

multip le languages through the utilization of the Google 

Translate API. Each message from the chat history is added 

to an array, and a request is made to the API to obtain 

translations for each message. This enables users to engage in 

conversations in English, Sinhala, and Tamil languages. 

To summarize the user’s chat and extract  emotions, a  

separate API is employed. Th is API utilizes the 

text-davinci-003 model and is responsible for generating a 

concise summary of the chat as well as identify ing the user’s 

emotions. By leveraging a recommendation algorithm, the 

extracted summary  and emotions are used to suggest 

appropriate alleviation techniques. 

C. Algorithm Training Dataset 

The experiments are conducted using the publicly  

available Wearable St ress and Affect Detection (WESAD) 

dataset [23], which recorded physiological (BVP, ECG, 

EDA, EMG, RESP, and TEMP) and mot ion (ACC) data from 

two different  devices: a chest-based and a wrist-based device. 

The dataset included data from 15 part icipants with a mean  

age of 27.5±2.4 years. To  ensure the valid ity of the data, 

participants were carefully selected, and exclusion criteria 

were applied, including pregnancy, heavy smoking, mental 

disorders, and chronic and cardiovascular diseases. The 

dataset was labeled with four emotional states: baseline, 

stress, amusement, and meditation, which were examined 

during the data collection process. 

D. Algorithms (1) PPG Algorithm 

    The PPG algorithm is designed to reduce noise and 

extract essential features from PPG signals, as shown in  

figure 5, involving the orchestration of multip le denoising 

and peak-detecting methods proposed in [13]. 

 
Figure 5. PPG Algorithm Flowchart 

A. Step 1: Up-sampling 

PPG signals in the WESAD dataset are stored at a 64 Hz 

data rate [23], the same rate used for feature ext raction and 

machine learning model training. When generating PPG 

signals from the mobile phone camera, the frequency varies 

between 15 Hz and 30 Hz, determined by divid ing the signal 

length by a fixed input time. The signal is then up-sampled to 

64 Hz. Wearable devices provide PPG signals direct ly at a 64 

Hz rate, eliminating the need for up-sampling. 

B. Step 2: Noise Filtering 

To effectively filter out unwanted noise and retain the 

pertinent features of a heart signal, a  bandpass filter with a 

passband ranging from 0.5 Hz to 10 Hz is implemented. This 

passband range encompasses the critical heart  signal features, 

ensuring that ext raneous frequency components are 

eliminated. 

C. Step 3: Noise Elimination 

The noise elimination process involves segmenting the 

PPG signal into fixed-length segments. It is crucial to 

determine an optimized segment length that balances the 

accuracy of feature extract ion, and the time required to 

collect a sufficient number of uncorrupted s egments for 

subsequent analysis. Through rigorous experimentation on 

the dataset, multiple tests are conducted to identify the 

optimal segment length, which has been found to be 40 

seconds. Upon partitioning the data, key  statistical 

parameters such as standard deviation, kurtosis, and 

skewness are computed for each segment. These statistical 

measures serve as criteria for detecting segments corrupted 

by noise. By comparing these computed statistical data with 

threshold values derived from clean PPG signals , corrupted 

segments are effectively identified and eliminated from the 

dataset, thereby ensuring the reliability and integrity of 
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subsequent analyses and machine learning model training. 

D. Step 4: Peak Detection 

We implemented five distinct methods for peak detection, 

as described in [13]:  

● LMM: Local Maxima Method 

● BGM: Block Generation  with the Mean of the Signal 

Threshold Method 

● FDM: First Derivative with an Adaptive Threshold 

Method 

● SFM: Slope Sum Function with an Adaptive 

Threshold Method 

● MAM: Moving Averages with the Dynamic 

Threshold Method 

To determine the final peak detection result, a voting 

method is employed, considering the outcome that is shared 

among at least n out of the 5 methods. Based on [13], the 

most accurate results are obtained when n = 3. 

E. Step 5: Feature Extraction 

Upon peak detection, the intervals between  consecutive 

main peaks are computed. Using these intervals, we calculate 

26 distinct features as described in [13], most of which are 

associated with heart rate variability. Subsequently, these 

extracted features are input into machine learning algorithms 

to obtain the final result. 

EDA Algorithm 

Feature extraction of EDA signals is conducted using the 

pyEDA library [24]. As shown in figure 6, the signal in itially  

undergoes down-sampling to 4 Hz, followed by noise 

removal using a moving average approach. For statistical 

feature extraction, the cvxEDA algorithm provided by 

pyEDA is employed. The features fed into the machine 

learning algorithms include:  

● Number of peaks per minute 

● Maximum peak value 

● Average of the signal 

 
Figure 6. EDA Algorithm Flowchart 

E. ML Algorithms 

To classify stress into two levels, seven different classical 

machine learn ing models are employed. The models are 

trained using feature vectors extracted from the WESAD 

dataset, and the performance of the extracted features is 

evaluated. The machine learning models used are as follows: 

● Gradient Boosting Classifier 

● Support Vector Machines  

● Linear Discriminant Analysis  

● K-Neighbors Classifier 

● AdaBoost Classifier 

● Random Forest Classifier 

● Decision Tree Classifier 

Parameters are experimentally tuned to achieve the highest 

accuracy. Deep learn ing models could not be applied to our 

experiment due to insufficient data for training. To enhance 

the accuracy of the final result, a  voting method is 

implemented, considering a total of 14 votes—seven for each 

model related to PPG features and seven for each model 

related to EDA features. The used evaluation metrics include 

F1 score, Area Under the Curve (AUC), and accuracy score 

for each model. 

For tuning the weights of each vote, we consider the 

individual performance accuracy of each model for PPG and 

EDA features, as well as feature importance. Feature 

importance is taken into account to ensure the generalizat ion 

of results across the dataset by increasing the vote weight of 

models that demonstrated a greater dependency on features 

related to heart rate variability. 

V. DATA COLLECTION 

To test and evaluate our application in real-life settings, we 

conducted a data collection experiment with twenty 

participants, consisting of 13 men and 7 women. All 

participants are undergraduate students at our university. 

This study was approved by the 56th UERC Committee of the 

University of Moratuwa. Prior to their involvement in  the 

study, all part icipants signed a detailed informed consent 

form outlin ing the purpose and procedures of the research. 

Each part icipant was assigned a unique id to ensure 

anonymity throughout the study. Following the complet ion 

of data collection, all personal identifiers linking participant 

names to their assigned ids were anonymized. 

Prior to obtaining readings from the wearable device, 

participants were instructed to sit down and relax for a brief 

period. To gauge the participant’s mental state, an initial 

questionnaire was administered to determine the presence of 

stress. 

A. Data Collection Using Wearable Device 

The two sensors of the wearable device are attached to the 

participant’s fingers, ensuring proper placement. Once the 

sensors are securely positioned, a Bluetooth Low Energy 

connection is established between the mobile application and 

the wearable device. A  command is sent from the mobile 

application to in itiate the signal reading process on the 

wearable device. The data capture phase lasts approximately  

3 minutes, during which readings are recorded. Upon 

complet ion, the captured data is transmitted from the 

wearable device to the mobile application using Bluetooth 

Low Energy technology. 
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B. Data Collection Using Mobile Application Camera  

The participant is provided with a mobile phone that has 

the application installed and is instructed to place their index 

finger over the mobile phone camera. The video capturing 

process is init iated from the application, with the flash 

activated. If motion is detected by the Frame Difference 

Motion Detector while taking read ings, an error message is 

displayed, and the participant is required  to restart the read ing 

process from the beginning. The mobile phone camera 

records video frames for a duration of 1.5 minutes. 

Subsequently, the values of the frames are calculated, and a 

request body is generated. 

Finally, in both detection methods, the mobile application  

sends a request to the server to retrieve the stress results and 

heart rate informat ion associated with the part icipant. The 

collected data from the wearable device or the mobile phone 

camera, along with the questionnaire responses, are used to 

create the dataset for further analysis and research purposes. 

VI. EXPERIMENTS AND RESULTS 

This section describes the experiments conducted and the 

corresponding results obtained for the application. 

A. Feature Extraction and Sensor Calibration 

Photoplethysmography (PPG) signals extracted from both 

hardware devices and mobile phone cameras are processed 

using the PPG algorithm. As the final stage of the PPG 

algorithm, PPG features are extracted by calculating the 

intervals between the detected peaks. To assess the 

performance of the input methods and the feature extract ion 

algorithm, and to validate their accuracy, the extracted heart 

rates are compared with data collected simultaneously using 

a standard Philips multi-parameter patient monitor. The 

results for different test samples are depicted in figure 7. The 

overall deviation of the heart rates from the standard method 

is 10 beats per minute (bpm) for the hardware device method 

and 9 bpm for the mobile phone camera method. 

 
Figure 7. Comparison of Heart Rate 

B. Results for WESAD Dataset  

When applying the PPG algorithm to the validation data of 

the WESAD dataset, the results yielded an average machine 

learning model accuracy of 90.33%, an area under the curve 

(AUC) of 88.66%, and an F1 score of 81.50%. The individual 

results are presented in Table 1. 

 

Table I: Accuracy for WESAD Dataset for PPG Data 

ML Model Accuracy (% ) F1 Score (% ) Area Under Curve (% ) 

Gradient Boosting Classifier 91.39 82.11 88.80 

Support Vector Machines  93.39 84.38 90.62 

Linear Discriminant Analysis  93.89 83.36 89.86 

K-Neighbors Classifier 82.19 81.19 88.16 

AdaBoost Classifier 93.60 84.01 90.18 

Random Forest Classifier 90.62 79.26 87.90 

Decision Tree Classifier 87.24 76.19 85.07 

 

Similarly, upon implementing the EDA algorithm on the 

validation data of the WESAD dataset, the results showed an 

average machine learning model accuracy of 92.20%, an area 

under the curve (AUC) of 91.90%, and an F1 score of 

87.42%. The individual results are provided in Table 2. 

 

Table II: Accuracy for WESAD Dataset for EDA Data 

ML Model Accuracy (% ) F1 Score (% ) Area Under Curve (% ) 

Gradient Boosting Classifier 93.10 87.25 91.99 

Support Vector Machines  93.88 89.31 93.30 

Linear Discriminant Analysis  95.76 90.47 94.49 

K-Neighbors Classifier 88.04 88.04 92.38 
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ML Model Accuracy (% ) F1 Score (% ) Area Under Curve (% ) 

AdaBoost Classifier 90.97 86.65 90.88 

Random Forest Classifier 94.61 89.52 93.77 

Decision Tree Classifier 89.05 80.69 86.49 

 

C. Results for Real-World Data 

To validate the final generalized model, results from the 

collected data using both the mobile phone camera and the 

wearable hardware device were analyzed. The accuracy of 

both capturing methods is presented in Table 3. 

Table 3: Accuracy for Real-World Data 

Data Capturing Method Accuracy (% ) 

Mobile Phone Camera 80.97 

Wearable Hardware Device 83.42 

VII. CONCLUSION 

In this research, we addressed the significant impact o f 

stress on modern society and presented the design of a 

cost-effective and accurate wearable device capable of 

detecting mental stress based on skin conductance and heart 

rate variability. Complementing the wearable device, we 

developed a mobile application utilizing the device’s camera 

for stress detection. 

Our wearab le device effect ively monitored users’ mental 

stress levels and wirelessly transmitted stress -related data to 

their s martphones. To enable stress prediction, we employed 

various sensors in the wearable device, and through 

intelligent analysis of correlations between the input signals 

using machine learn ing algorithms, we predicted whether the 

user was experiencing stress. 

In conclusion, our research presents a practical and 

affordable solution for stress detection and alleviation, 

fostering a better understanding of s tress patterns and 

assisting healthcare professionals in providing more 

personalized treatment. Future work will focus on enhancing 

the system’s capabilities and expanding its application to 

cater to a wider audience, u ltimately contributing to better 

mental health management in society. 
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